Noisy subspace clustering via matching pursuits

نویسندگان

  • Michael Tschannen
  • Helmut Bölcskei
چکیده

Sparsity-based subspace clustering algorithms have attracted significant attention thanks to their excellent performance in practical applications. A prominent example is the sparse subspace clustering (SSC) algorithm by Elhamifar and Vidal, which performs spectral clustering based on an adjacency matrix obtained by sparsely representing each data point in terms of all the other data points via the Lasso. When the number of data points is large or the dimension of the ambient space is high, the computational complexity of SSC quickly becomes prohibitive. Dyer et al. observed that SSC-OMP obtained by replacing the Lasso by the greedy orthogonal matching pursuit (OMP) algorithm results in significantly lower computational complexity, while often yielding comparable performance. The central goal of this paper is an analytical performance characterization of SSC-OMP for noisy data. Moreover, we introduce and analyze the SSC-MP algorithm, which employs matching pursuit (MP) in lieu of OMP. Both SSC-OMP and SSC-MP are proven to succeed even when the subspaces intersect and when the data points are contaminated by severe noise. The clustering conditions we obtain for SSC-OMP and SSC-MP are similar to those for SSC and for the thresholding-based subspace clustering (TSC) algorithm due to Heckel and Bölcskei. Analytical results in combination with numerical results indicate that both SSC-OMP and SSC-MP with a data-dependent stopping criterion automatically detect the dimensions of the subspaces underlying the data. Experiments on synthetic and real data show that SSC-MP often matches or exceeds the performance of the computationally more expensive SSC-OMP algorithm. Moreover, SSC-MP compares very favorably to SSC, TSC, and the nearest subspace neighbor (NSN) algorithm, both in terms of clustering performance and running time. In addition, we find that, in contrast to SSC-OMP, the performance of SSC-MP is very robust with respect to the choice of parameters in the stopping criteria.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic motion capture data denoising via filtered subspace clustering and low rank matrix approximation

In this paper, we present an automatic Motion Capture (MoCap) data denoising approach via filtered subspace clustering and low rank matrix approximation. Within the proposed approach, we formulate the MoCap data denoising problem as a concatenation of piecewise motion matrix recovery problem. To this end, we first present a filtered subspace clustering approach to separate the noisy MoCap seque...

متن کامل

Sparse Additive Subspace Clustering

In this paper, we introduce and investigate a sparse additive model for subspace clustering problems. Our approach, named SASC (Sparse Additive Subspace Clustering), is essentially a functional extension of the Sparse Subspace Clustering (SSC) of Elhamifar & Vidal [7] to the additive nonparametric setting. To make our model computationally tractable, we express SASC in terms of a finite set of ...

متن کامل

Dimensionality-reduced subspace clustering

Subspace clustering refers to the problem of clustering unlabeled high-dimensional data points into a union of low-dimensional linear subspaces, whose number, orientations, and dimensions are all unknown. In practice one may have access to dimensionality-reduced observations of the data only, resulting, e.g., from undersampling due to complexity and speed constraints on the acquisition device o...

متن کامل

A Deterministic Analysis of Noisy Sparse Subspace Clustering for Dimensionality-reduced Data

Subspace clustering groups data into several lowrank subspaces. In this paper, we propose a theoretical framework to analyze a popular optimization-based algorithm, Sparse Subspace Clustering (SSC), when the data dimension is compressed via some random projection algorithms. We show SSC provably succeeds if the random projection is a subspace embedding, which includes random Gaussian projection...

متن کامل

Graph Connectivity in Noisy Sparse Subspace Clustering

Subspace clustering is the problem of clustering data points into a union of lowdimensional linear/affine subspaces. It is the mathematical abstraction of many important problems in computer vision, image processing and machine learning. A line of recent work [4, 19, 24, 20] provided strong theoretical guarantee for sparse subspace clustering [4], the state-of-the-art algorithm for subspace clu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1612.03450  شماره 

صفحات  -

تاریخ انتشار 2016